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THE NECESSITY OF THE WIENER TEST FOR SOME
SEMILINEAR DEGENERATE ELLIPTIC EQUATIONS

©MaRrco BIRoOLI

1.Introduction

In this paper we will deal with the Wiener criterion on the regularity of a point
of the boundary for subelliptic nonlinear problems. Let 2 be an open bounded set
in RV we consider C*®-vector fields X;, i = 1,...,m, satisfying an Hormander
condition.

We recall that there is an intrinsic distance denoted by d, which is related
to the vector fields, [10,11,14,17,18], and we write B(z,r) = {yld(z,y) < r}.
B(r) = B(0,r), where 0 is the point (0,0,...,0) in RV,

Let H(2, X)(H}(S2, X)) be the completion of C*(2)(C§°(£2)) for the norm

ol = (3 1 Xa(o) 1B + 11 v 113)%

i=1

where || . ||, denotes the usual L? norm on Q and a;j(x) be bounded measurable
functions on €2 such that a;; = a;; and

m

MER < Y aij(2)ei; < Al (1.1)

i,j=1

for every £ € R™ and ae. z € 2. We consider the bilinear form on HY(Q, X)
given by

a(u,v) = /n Z a;j XiuX;vd
S8 i= .

and a function f(z,2,9) on Q@ x R x R™ continuous in (z, ¢) for each fixed z and
measurable in z for each fixed (z, ¢) such that

|f(x,2,q)] < a+blg)? (1.2)

forge RN,z € R and for ae. x € Q.
We consider the problem

m

- Z Xjlai;; Xiu) = f(z,u, Xu)in Q (1.3)

1.5=1

where Xu = (X;u, i =1,..., m). We say that u € HY(RV X)nL>®(RY) is a

bounded weak solution to (1.3) with boundary value ® € H' (RN, X)n L>=(RN) if
()u—®e HY, X), and
(i) for all ¥ € HL(92, X) N L=(R)

a(u, ) = f flz, u, Xu)pde.
0
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There s a natural notion of capacity associated to our problem; namely let K
be a compact set in the open set O then the capacity cap(K, Q) is defined as the

infimum of the integral
L

[ Y ai; XivXjvde
@
ty

taken on all functions v € C}(O) such that v > 1 on K. The definition is extended
to open sets A C O by

cap(A, O) = sup{cap(K.0); K C A compact}
and to arbitrary subsets £ in O by
cap( . Q) = inf{cap(,Q): E C A, A C O open set}

The notion of potential and capacitary measure of a set are analogous to the
one given for the usual newtonian capacity and have the same properties.

We say that a set £ has capacity zero if cap(f2,O) = 0 for one (hence for all)
open sets O such that E C O. If a property depending on x € O, holds except a
subset of capacity zero, then we say that this property holds quasi - everywhere
(q.¢.).

The notion of capacity implies in a natural way a notion of quasi - continuily
and we have that a function v € H(£2. X) has a quasi-continuous representative
W,

For all properties connected with the notion of capacity we refer to the book of
Fukushima,[12].

Consider now the function ® and let zy be a point in 9 we say that @ is
continuous at rg with respect to dQ2 if cap(B(xy, R} dQ) > 0 for R > 0 and g¢.¢
- 08¢ grr, rinon® converges to 0 as r — 0. In this case we can take as value of @
at ay the g.e-limit of & when » € JQ approaches rg.

We say that zq is a regular (local) point for 9Q with respect to (1.3) if for every
open set ' C Q with xy € dQ' N JQ every bounded weak solution u of (1.3) with
boundary data ® € HY(RN , X) N L>(RY) on 9§ continuous at zg is such that

lim  u = $(ry).
r-—Tg,Tell
We recall that there is a well known criterion, namely the Weener criterion, for
the regularity of xy in the case f =0, [13].
We now recall the above criterion.

Theorem 1.1. Let f =0 and

cap(Q° N B(x,r), B(x,2r))

Nr)= cap(B(x.r), B(z,2r))

Then a necessary and sufficient condition for the regularity of xy with respect to

I 1s that
Ro dr
8(r)= = +o0 (1.4)
0 T

where Ry is positive and fixed.

Theorem 1.1 can be proved adapting the methods of [2] following the techniques
of [3,5]; a more general result will be proved, in a following paper, [6]. in the
framework of Dirichlet forms. Using exponential test functions of the type choosen
in [7,13]. we can extend the sufficient part of the criterion to the case f # 0.

In this paper we are concerned with the necessary part of the eriterion and we

“will prove the following result:
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Theorem 1.2. The condition (1.4) is necessary for the regularity with respect to
Q of the point xy.

In the following section we reduce the nonlinear problem to a linear one and
we give some results on the existence of the Green function of such a problem: in
section 3 we finally prove the Theorem 1.2. We recall that this problem has been
studied in the case of unifomly elliptic operators by’ Adams and Heard [1], and in
the monotone case with nonlinear principal part by Skrypnik, [19]. ( this Author
considers general nonlinear elliptic monotone problems ): those authors prove the
result of Theorem 1.2 under the additional assumption of Dini-continuity for the
coefficients a;;. Nothing seems to be known in the nonlinear case with Hormander’s
vector fields. : :

Finally we observe that the methods given here works again in the presence of
a weight w in the Ay Muckenhoupt's class (with respect to the intrinsic balls, see
(9] for the definition in the euclidean framework). In this case we have to take care
of the possible presence of points of positive capacity (see [2][6] for the analogous
linear elliptic case). For the tool used in the weighted case as weighted Poincare
and Sobolev inequalities we refer to [16].

2. Reduction to a linear case.

The first proposition we will prove show that there exists a solution to our
problem connected with a suitable super- and sub-solution to a linear problem.

In all this section we consider an open set O such that, denoted by A;(O) the
first eigenvalue of the Dirichlet problem with zero boundary data of the operator
-3 7, X2, we have

ab

Proposition 2.1. Let u be a bounded weak solution of

e

Y Xj(a; Xiu) = f(z,u, Xu) (2.1)

1,7 =l

a.e. n O with boundary data ®. Then the functions .u'p(-_i:-ilu} are subsolutions
of the problem

m‘ . M E . ”b & 1 2 :
Z ai XiVEXjvde - | 1 vde = 0 Yv € H (O, X) (2.2)
FESE vl

JO

with boundary values u:p[i}(‘b).
Proof: . The proof follows by easy computations. In fact for v € H{(O, X)N
L>=(0) with v = 0 we have
m 5 ; .Jj : !; T : ") G ]
Z a;j Ni(exp(~u)Xjvde = &+ Z ajj(exp(x+u) XjuX;vdr =
i'.'r':l'(J A )‘:'.jr;':'() A

2

{ : {
= : i;{ '/“ ai; Xiu .\'J.-E_vxp{:t-;- we)da

l,-. ‘; .iL : f 3 :
ri]" Z‘ ,/(; ‘\,\(|){i-;\in)f'fi,-;. NouXjudr <

iif=
ab/ b R Lah
— | (exp{—u)v)dr + / [N ul(exp(t~ujv)de—
A fw S ) Jo A
f i

: {

:\J-}"’ .Z‘ ./o cxp{rjti uva; NiuNjude €
| .,

b

¥‘ O{_vxp[:t:i:—u}r)rf‘r.
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Denote now by VE the solutions of (2.2) with boundary value vxp[i%([)] and

define vt =

i} log VE: then if wis a bounded weak solution of (2.1) with boundary
data ¢ we have

n<ut, (2.3)

Proposition 2.2, The problem (2 1) with boundary data & has at least one
sofalean w weth %

Sketch of the Proof: We only sketch the proof:

(1} We regularize [ by _
J

1 +ef

and we denote by () and (F2) the boundary problems relative to [ and f.. We
observe that

Jrs -

el 2 ) < If(e, 2, )]

where = = L1

n

Denote by u, the solutions, whose existence can be easily proved, of (P ). The
existence of a bounded weak solution of problem (£2) can be proved for example
by a fixed point method in H} (0. X) taking also in account the local estimates
for the linear problem given in [5] and that the proof of the global L™ estimate for
the Tinear problen given i I5] i the case of balls hold again for general bounded
open set O, Then from (2.3) we obtain

= St (2.4)

From (2.4) we have easily that u, 1s bounded uniformly with respect to =,
{2) It follows easily from that u. is bounded in H'(O, X) and from [13] we have
that u. 15 bounded in €' locally in O. -
(3} At least after extraction of a subsequence we have that u. - ® converges weakly
in IO, X) and strongly in LP(O) for every finity p > 1 to - ®. From the C.
estimate we can also suppose that w, converges to u unifomly locally in O: then
casy computations proves that u. converges to u strongly in |} (O, X).

The convergences in (3) prove that u is a solution of (1.3) in O with boundary
data ¢,

Using the methods in [5] with the adaptations given for the usual unifomly
elliptic case in [9] we obtain that

Proposition 2.3 For cocry o in O there enists a Green function for (2.2) with
singularity al v € O denoted by GY,. Moreover choosing O = B(e. R) we have

“ i /bn 7z i/ e 1)
TBrR) R L St ) —J—p- on Ji3(r. r)

forr < 5. Morcover of we denote by (’H:H[.r.-'r’.] the reqularized Green funetion |
the defindtion is analogous to the one given in [5] m the case ab = 0 ) we have also

o dp
(;.:' - gt Do i o1 JB .
p Bl R) [ m(B(z.p)) _,0 on dB(x,r)

for2p<r< R, and
j}'_'_'[li Gontery = Oy
m CR (B )\ {e}) N HE (B(e R)\ {} X). _
Taking into account Propositions 2.1 and 2.2 our result will be proved if, in the

case of convergenee of the Wiener integral, we construet a solution V' of (2.2)
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relative to a boundary data W € HY(RY , X)n L=(RY), ¥ > ¢ > 0 and to the set
2. = QN B(zxg,r) with

lim ¥V=1=W¥z
T—To,TEI, ( O)
such that -
liminf,;....x[,‘xgnrlr""" < 1.

In fact if we consider the solution u of (2.1) in 2, with boundary data & =
2log¥ € HY(RYN, X) N L*®(RY) then

liminfy— ;. ren, u < iminfy s zeq,ut < 0= &(z)

where ut = 2 log V'+.

3.Proof of Theorem 1.2.

We denote by H~1(O, X) the dual space of H}(Q, X). Moreover in this section
all the potentials and the Green functions are taken with respect to the form in
(2.2) and we can assume ( without loss of generality ) zo = 0. We recall that we
assume again 45 < A,(0).

Proposition 3.1. Let u be a bounded positive measure in H='(0; X),0 =

B(2R), with support in B(R).
Let vy be the potential of p in B(2R). Assume

2R dp ‘
| e “’”mwun 2 < 400, (3.1)

Denote G the Green functions with singularity at 0 with respect to B(2R); then
G(x,0) is integrable with respect to the measure p and the value

w0 = [ RCCOCD

is well defined.
Moreover the limit

1
0) = lim ——— r{x)dr
LR( J PE-I(IH m B(ﬂ}} B(p) bﬂ{?) .

exists finite and

2R

- dp :
vr(0) = DR(0) < C B 3.2
(0) = 5(0) < C [ uBlp) s (32)

Proof: Let us prove the Lemma for a fixed R = B. We observe that
2 ds R 52 a"s
B < —_— 3.
hence
2R 2
P dp

liminf_ou(B(r)) {f BT —) < 400
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Integating by parts and taking the size of GG into account we obtain for arbitrary
hr =K< R

2R 2
: gt dp
G(r, 0)pu(dr “—cj (] — —Ju(dr) =
</r<d:r.n_1<ff ) r<d(r,0)<R Jd(z,0) m(B(p)) P} (dz)

R 2 2R 2
) dp  ——— p dp 2
B(o)—2 9 _ TR / it dp (3.4)
/ Bl g MR et o

2R 2
J(TJJ/’ ]rn(H(P}) (2

Putting ¢ = r and letting R — R we have

/ G(x,0)pu(dr) <
o(d(r 0)<R

g IR 2R p? dp i
cf up) L o) [ L @)

< 2R Pt dp
2 / W(B(P) s 2.

We now let ¢ — 0 and we obtain that GG(r,0) is indtegrable with respect to g and

. R )
= . pe dp T
Ge,0)p(de) < C [ u(B(p)) = —. (3.6)
/i'-:m Jo m(B(p)) p
(we denote by C possibly different constants depending on X;, i = 1,...,m. and

on -—J From (3.6) we have

lim / Gz, 0)pu(dx) =0, (3:7)
Rl g 105
Now we prove that v5(0) = v{(0). By the estimates on the regularized Green

function 7, we obtamn that
Go(r,0) < G(x.0).

We recall that
hmG o(2,0) = G(=,0) (3.8)

everywhere for & # 0 and uniformly for d(z,0) > ¢
Bemg G{x.0) integrable on B(2R), we have that for o < %

: Hmpﬁﬁ/ Gola,0)pu(de) = / G, 0)u(dr) (3.9)
Bia) Jfa)
I'rom (3.8) we have that
lim / Go(r, 0)p(dr) = / Gz, 0)p(dr) (3.10)
=N Jdix 0i>e Jd{r,0)>0
From (3.9) and (3.10) 1t follows
1
vE{0) = ———+ vede =

m(B(p)) Ju,y

Iim/ (:,,(r,u‘}u(d;-):f Gz, 0)u(dr) = i7(0).
r=0.JB(2F) B(2R)
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Proposition 3.2. Let I, p > 0, be subsets of RV such that
E, 0 B(p) C E, € Blp) C B(r) CO

for every 0 < p < r. Let u, be the capacitary measure of E, in B(2p); than for
every r > 0 and 0 < p < r we have

ur(B(p)) < 1o(B(p))
Proof: Let w, be the potential of E, in B(2p). We have

by

ZjauYup\ wyde 2 Z/au/\’up/\ wydz

ij=1 ij=1
where 0 < p < r.
The result follows easily from the above relation using the capacitary measures.
Now we choose O = Q2N B(2r) = {2, then for 0 < r < R, R suitable, we have
j\‘—f{ < A (0), so we can use all the previous results.
Proof of Theorem 1.2: Let us suppose that

R -
a'(p)de’ < 400 (3.11)

Q

To prove Theorem 1.2 it is enough to prove that for » suitable with 0 < r < H there
exists w, solution of (2.2) in Qy, with boundary data ¥ € H'(RN, X)n L>(RY),
¥ > ¢ > 0, such that we have

liminf, _ow,(z) < 1. (3.12)
The maximum principle show that to find w, it is enough to prove that denoted
by v, the potential of Q° N B(r) in B(2r) we have

liminf, _ov,.(2) < 1. (3.12)

To prove (3.12') it is enough to prove that for r suitable with 0 < r < R we
have

hm ——— w(2)de = v, (0 1. 3.13
hl—rnTi]J ?’ﬂ(!?(p)} B(,{l]l (:r)t 5 ' [ ) > ( )

Let p, be the capacitary measure of 2, with respect to B(2r).

For every r > 0 we have supp(y,) € B(r), then from (3.11) and from the
Proposition 3.2 we obtain

2r ]
p> dp
I < +oc.
[ e iy

By Proposition 3.1 with g = u, we obtain

2r dp
v, (0) < C :
(O <C [ ) s
Then from Proposition 3.2 we have also
2r
d
w(0)<C [ 82
0 P
By letting r — 0, we obtain from (3.11)
“lim v, (0) = 0. (3.14)
r—() '

From (3.14) the relation (3.13) easily follows.
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